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Abstract
The known extended algebras associated with p-branes are shown to be
generated as topological charge algebras of the standard p-brane actions. A
representation of the charges in terms of superspace forms is constructed. The
charges are shown to be the same in standard/extended superspace formulations
of the action.

PACS numbers: 02.20.Sv, 03.50.−z, 02.40.Sf, 11.15.Kc, 11.25.−w, 11.27.+d,
11.30.−j, 11.30.Pb, 11.40.−q

1. Introduction

The p-brane Lagrangian [1–3] consists of the kinetic term and the WZ (Wess–Zumino)
term. The field strength of the WZ term has uniqueness and cohomological nontriviality
as characteristic properties [4]. Under the action of the super-Poincaré group, the p-brane
Lagrangian is invariant only up to a total derivative that results from the WZ term. Due to
this ‘quasi-invariance’, the Noether charge algebra of the p-brane is modified by a topological
‘anomalous term’ [5]. The anomalous term and the WZ term are related cohomologically: the
former may be found from the latter by solving descent equations in a construction involving
ghost fields [6, 7]. Based on the topological distinctions between the bosonic and fermionic
coordinates [8], terms associated with the fermionic topology have usually been omitted from
anomalous term calculations. This results in bosonic, ‘central’ extensions of the standard
supertranslation algebra (for example, those explicitly derived in [5, 9]).

On the other hand, there also exist fermionic extensions of the standard supertranslation
algebra [10]. Some of these algebras allow manifestly super-Poincaré invariant WZ terms to
be constructed for the p-brane action [11–13]. Such extensions (which are in general non-
central) contain additional fermionic generators which appear like the fermionic analogues
of the bosonic topological charges [14, 15]. The explicit construction of such fermionic
topological charges was considered in [16–18]. In the extended superspace formulation of
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the action, the Noether charges associated with extra coordinates are also topological, and a
correspondence between the bosonic topological terms in standard/extended formulations of
the action was discovered [13].

Recently, we further investigated the cohomological descent system. A total differential
approach was established in which the WZ field strength and the anomalous term are equivalent
representatives of a (p + 2)-cocycle associated with the p-brane [19]. Due to the freedom in
the choice of representatives, the anomalous term is a cohomology class. The differentials
involved in the descent sequence were shown to be equivalent, which implies invertibility
of the sequence and that the anomalous term is a unique and nontrivial class. The different
representatives of the class result in the generation of a ‘spectrum’ of topological charge
algebras, all of which are extensions of the super-Poincaré algebra by an ideal. When
the terms associated with fermionic topology are retained, one finds that the superspaces
underlying extended superspace formulations of the superstring action are generated as the
topological charge algebras of the standard superstring action.

The main purpose of this paper is to show that this correspondence continues for
p-branes with p � 2. Since the results of [5] exclude not only the fermionic charges, but also
the fermionic corrections to the bosonic charges, the generalization of these results where all
terms are retained is required (the simplifications associated with the trivial fermionic topology
may be deduced at the end). We find this generalization not by the descent method but by
using the uniqueness of the anomalous term. The charges are shown to be representations of
the ideals of the extended algebras of [12, 13]. It follows that these extended algebras are
indeed generated as the topological charge algebras of the standard p-brane action. It emerges
along the way that the topological charges are the unique solution satisfying the extended
algebra, and that the charges (including all terms—both bosonic and fermionic) are the same
in standard/extended formulations of the action.

The structure of this paper is as follows. In section 2, our notation is introduced and the
properties of p-branes are summarized. The construction of the topological charge algebras is
reviewed and a summary of the descent methods is given. In section 3, we present the closed
forms that provide representations of the ideals of the known extended algebras associated
with p-branes. An associated form is shown to be a representative of the anomalous term of the
Noether charge algebra of the standard superspace p-brane action. In section 4, it is shown that
the derived forms also represent Noether charges for p-branes defined on the corresponding
extended superspaces. In section 5, we comment on some properties of the results.

2. Preliminaries

2.1. p-branes

We start with a brief review of the required supergroup equations. Useful references on this
material include [4, 6, 10, 12, 13, 20], with more comprehensive treatments in [8, 21]. The
superalgebra of the supertranslation group is1

{Qα,Qβ} = �a
αβPa. (1)

The corresponding group manifold can be parameterized:

g(Z) = exaPa eθαQα , ZA = (xa, θα). (2)

1 The charge conjugation matrix will not be explicitly shown. It will only be used to raise/lower the indices on
gamma matrices, which have the standard position �α

β . �αβ is assumed to be symmetric. Majorana spinors are
assumed throughout (thus, for example, θ̄ α = θβCβα). The right acting convention for the de Rham differential is
used, and wedge product multiplication of forms is understood.
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The left vielbein is defined by

L(Z) = g−1(Z) dg(Z)

= dZM LM
A(Z)TA, (3)

where TA represents the full set of superalgebra generators. The right vielbein is defined
similarly:

R(Z) = dg(Z)g−1(Z)

= dZM RM
A(Z)TA. (4)

The left group action is defined by

g(Z′) = g(ε)g(Z), (5)

where εA is an infinitesimal constant. The corresponding superspace transformation is
generated by the operators

QA = RA
M∂M, (6)

where RA
M are the inverse right vielbein components defined by

RA
MRM

B = δA
B. (7)

Explicitly, this yields

Qαxm = − 1
2 (�mθ)α, Qαθµ = δα

µ,

Qax
m = δa

m, Qaθ
µ = 0.

(8)

QA are the generators of the left group action and will be referred to as the ‘left generators’.
The action of QA upon superspace forms is given by the Lie derivative with respect to the
vector field associated with (6). Forms that are invariant under the global left group action
will be called ‘left invariant’. The vielbein components LA are left invariant by construction.
Their explicit form is

La = dxa − 1
2 dθ �aθ, Lα = dθα. (9)

Indices A,B,C,D will be used to indicate components with respect to this basis. Indices
M,N,L, P will be used for the coordinate basis.

The NG (Nambu–Goto) action for a (p + 1)-dimensional manifold embedded in the
background superspace is

S = −
∫

dp+1 σ
√−g. (10)

The integral is over the embedded (p + 1)-dimensional ‘worldvolume’, which has coordinates
σ i . The worldvolume metric gij is defined using the pullback of the left vielbein

Li
A = ∂iZ

MLM
A, gij = Li

aLj
bηab, (11)

and g denotes det gij . A p-brane is the κ-symmetric generalization of the NG action. The
p-brane action is [1–3]

S = −
∫

dp+1 σ
√−g +

∫
B. (12)

The first term is the ‘kinetic’ term. The second term is the WZ term, which is the integral over
the worldvolume of a superspace form B defined by the property [1, 2]

dB = H

∝ dθα dθβ La1 · · · Lap
(
�a1···ap

)
αβ

. (13)
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The proportionality constant depends on p and is determined by requiring κ-symmetry of the
action. Closure of H requires the Fierz identity [1–3]:

�[a1···ap]
(αβ�apδε) = 0, (14)

which is only satisfied for certain combinations of p (number of spatial brane dimensions) and
d (superspace dimension). The allowed values of (p, d) (called the ‘minimal branescan’) are
such that (

�[a1···ap]
)
αβ

= (
�[a1···ap]

)
βα

. (15)

This ensures that H can be nonzero. It turns out that H is a unique, closed, left invariant
(p + 2)-form of dimension p + 1 [4].

2.2. Topological charge algebras

We are familiar with Noether charge algebras in which symmetries of an action are
associated with conserved charges that transform according to the underlying symmetry
group. Topological extensions to supersymmetry algebras can occur if the topology is such
that the surface terms contribute to the charge algebra [22]. The topological charge algebras
considered here are those which generalize the Noether construction to the case of actions
which are invariant only up to a total derivative—the case with p-branes [5]. A quite general
treatment of this material is given in [9]. We now give a brief review.

The Hamiltonian formulation of dynamics is cast in terms of the coordinates ZM and their
associated conjugate momenta PM , which together constitute the ‘phase space’. The momenta
are defined by

PM = ∂L

∂ŻM
. (16)

The following fundamental (graded) Poisson brackets on phase space will be used2:

[PM(σ), ZN(σ ′)} = δM
Nδ(

−→
σ − −→

σ ′), (17)

where it is assumed σ ′0 = σ 0 (i.e. equal time brackets). The Dirac delta function notation is
shorthand for the product of the p delta functions associated with the spatial coordinates of
the worldvolume.

The Noether charges associated with a manifestly left invariant Lagrangian will be denoted
by QA. One finds

QA =
∫

dp σRA
MPM. (18)

These charges satisfy the same algebra as the underlying superalgebra, but with the sign
reversed:

[QA,QB} = −tAB
CQC, (19)

where tAB
C are the structure constants of the underlying superalgebra. For later convenience

we refer to (19) as the ‘minimal algebra’. It follows from the left invariance of H that the left
variation of the WZ form B is closed [1–4]:

QAB = −dWA. (20)

2 Different types of bracket operation are used in this paper. We will not explicitly indicate the type since this should
be clear within context.
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If QAB �= 0, the p-brane Lagrangian is symmetric only up to a total derivative. We define a
‘bar map’ by its action on an arbitrary superspace p-form Y:

Y = (−1)p
∫

�∗Y. (21)

The map � embeds the spatial section of the worldvolume, which we assume to be a closed
manifold. Due to the variation (20), the conserved charges in the presence of the WZ term are
[5, 9]

Q̃A = QA + WA. (22)

The conserved charges obey a modified version of the minimal algebra [5, 9]:

[Q̃A, Q̃B} = −tAB
CQ̃C + MAB, (23)

with

MAB = [QA,WB} + [WA,QB} + tAB
CWC. (24)

M is the topological ‘anomalous term’ which modifies the Noether charge algebra.

2.3. Anomalous term cohomology

The de Rham complex consists of the space of differential forms under the action of the exterior
derivative d. This can be extended into a double complex by the addition of a second nilpotent
operator that commutes with d (see [23] for a comprehensive treatment). The operator used in
this paper is a ‘ghost differential’ s which requires the introduction of a ghost partner eA for
each coordinate [6]. The ghost fields have the opposite grading to coordinates:

[eA, ZM} = 0, {eA, eB ] = 0, (25)

where [ , } and { , ] are the graded commutator and anticommutator. eA are independent of the
coordinates ZM and hence satisfy deA = 0. A general element of the double complex is a
‘ghost form valued differential form’. The space of all such ‘generalized forms’ of differential
degree m and ghost degree n will be denoted by �m,n. A generalized form Y ∈ �m,n will be
written using a comma to separate the ghost indices from the space indices:

Y = eBn · · · eB1LAm · · ·LA1YA1···Am,B1···Bn

1

m!n!
. (26)

The ghost differential can be defined by the following properties.

• s is a right derivation. That is, if X and Y are generalized forms and n is the ghost degree
of Y, then

s(XY) = Xs(Y ) + (−1)ns(X)Y. (27)

• If X has a ghost degree zero, then

sX = eAQAX. (28)

•
seA = 1

2eCeBtBC
A. (29)
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There is a total differential D that is naturally associated with a double complex [23],
which in this case is [19]

D = s + (−1)n+1d, D2 = 0, (30)

where n is the ghost degree of the generalized form upon which D acts. The spaces �l
D of

the single complex upon which D acts are the sum along the anti-diagonal of the spaces of the
double complex:

�l
D = {⊕�m,n: m + n = l}. (31)

The lth cohomology of D is

Hl
D = Zl

D

/
Bl

D, (32)

where Zl
D are the D closed generalized l-forms (D cocycles) and Bl

D are the generalized
l-forms in the image of D (D coboundaries). The restriction of Hl

D to representatives within
�m,l−m will be denoted by Hm,l−m.

The p-brane has an associated D cocycle defined by the representative H ∈ Hp+2,0, with
H as given in (13). One progresses from H to the anomalous term via ‘descent equations’ [6].
The first two descent equations are [6, 7, 19]

H = dB, sB = −dW. (33)

The anomalous term can then be represented by the form [6, 7, 19]

M = sW, (34)

which is the Hp,2 representative for the D cocycle. The topological anomalous term (24) is
related to this via map (21). Because M is d closed, M is a topological integral of M over the
spatial section of the worldvolume.

It is well known that equation (13) defines B only up to a total derivative. In the
cocycle description, this is part of the gauge freedom generated by D coboundaries. The
transformations for B and W are generated by gauge fields ψ ∈ �p,0 and λ ∈ �p−1,1 [19]:

�B = −dψ, �W = sψ + dλ. (35)

The resulting gauge transformation of the anomalous term is

�M = s dλ. (36)

All elements of the double complex (including the gauge fields) must satisfy the requirements
of the Lorentz invariance and dimensionality p + 1.

Now H is the unique Poincaré invariant, d closed form of dimensionality p + 1 [4]
(uniqueness is up to a proportionality constant). As a result, there are no coboundaries for
Hp+2,0 cohomology. However, there are coboundaries for Hp,2 cohomology; this is the gauge
freedom (36) for M. So the anomalous term is well defined only as the cohomology class
[M] consisting of the restriction of Hp,2 to the Lorentz invariant forms of dimensionality
p + 1. This class is nontrivial and unique [19]. As a result, if we can find a single nontrivial
representative for [M], the entire class will be generated by the λ gauge transformations.

As in [7], we find it easiest to work with differential operators and the forms from which
the Noether charges are derived instead of the Noether charges themselves. Instead of (22),
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we thus use the left generators modified by forms [6, 7, 19]

Q̃A = QA + WA. (37)

These obey the same modified algebra (23) as the conserved charges [6, 7, 19]

[Q̃A, Q̃B} = −tAB
CQ̃C + MAB. (38)

The full class [M] therefore generates a ‘spectrum’ of extended superalgebras. If the fermionic
topology is trivial, M generates bosonic, ‘central’ extensions of the supertranslation group [5].
In the general case, the representatives M continue to generate extensions of the standard
supertranslation algebra, but the extensions are now in general fermionic and non-central
[19]. These ‘operator-form’ representations of the algebras contain operators Q̃A, and extra
generators represented by closed superspace forms �Ǎ. The associated topological charge
algebra (23) is obtained by the replacement

Q̃A → Q̃A, �Ǎ → �Ǎ. (39)

3. p-brane topological charge algebras

For higher values of p, finding the anomalous term via descent equations becomes lengthy. In
this paper, we will make use of the uniqueness of the anomalous term instead. We wish to
find a Lorentz invariant, D nontrivial element

M(p) ∈ Hp,2 (40)

of dimensionality p + 1, for each allowed value of p. By uniqueness of the class, this must
then be a representative of the p-brane anomalous term. If required, the full class [M] can
be generated by applying the λ gauge transformations to this representative. There is no
a priori obvious way to find M(p). However, we are motivated by the observation that the
spectrum of the topological charge algebras of the string action [19] consisted of extended
superalgebras that allow the left invariant WZ forms to be constructed for the string action.
This spectrum contained three different types of algebra (when classified according to the
generators present). Two of these algebras had been previously used to construct invariant
actions: the Green algebra [10] used in [11], and also a four-generator extension [12, 13]. An
algebra which allows a left invariant WZ form to be constructed for each p-brane of higher
dimension is also already known. The cases p = 2, 3 were given in [12]. In [13], an ansatz
was presented to generate Maurer–Cartan equations for the required algebra for general values
of p; however, the minimal branescan dictates that p-branes exist only for p � 5 [2, 3].

In this paper, the approach we will take to find M(p) somewhat reverses the process
used in [19]. We begin with the known extended algebra associated with a given value of p.
We assume that this extended algebra is contained in the spectrum of the topological charge
algebras generated by the standard superspace p-brane action. If this assumption is correct
then the extended algebra must have an operator-form representation where the generators of
the ideal are represented by closed superspace forms. We will explicitly find these forms. A
particular (p, 2)-form M(p) constructed from them will then be shown to be a representative
of the anomalous term associated with the standard superspace p-brane action.

For reference, let us give the known extended algebras that allow the left invariant WZ
terms to be constructed. The algebras will be given in the operator-form convention for which
we seek the representation (generators are negatives of those in the corresponding superalgebra
underlying the extended superspace action).
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3.1. p = 1 superalgebra [12, 13]

{Q̃α, Q̃β} = −�a
αβP̃ a − �aαβ�a,

[Q̃α, P̃ a] = −�aαβ�β,

[Q̃α,�a] = −�a
αβ�β.

(41)

3.2. p = 2 superalgebra [12]

{Q̃α, Q̃β} = −�a
αβP̃ a − �abαβ�ab,

[Q̃α, P̃ a] = −�abαβ�bβ,

[P̃ a, P̃ b] = −�abαβ�αβ,

[Q̃α,�ab] = −�[a
αβ�b]β,

[P̃ a, �
bc] = − 1

2δ[b
a �c]

αβ�αβ,

{Q̃α,�aβ} = − 1
4�a

γ δ�
γδδβ

α − 2�a
αγ �γβ.

(42)

3.3. p = 3 superalgebra [12]

{Q̃α, Q̃β} = −�a
αβP̃ a − �abcαβ�abc,

[Q̃α, P̃ a] = −�abcαβ�bcβ,

[P̃ a, P̃ b] = −�abcαβ�cαβ,

[Q̃α,�abc] = −�[a
αβ�bc]β,

[P̃ a, �
bcd ] = − 1

2δ[b
a �c

αβ�d]αβ,

{Q̃α,�abβ} = − 1
4�[a

γ δ�
b]γ δδβ

α − 2�[a
αγ �b]γβ,

[P̃ a, �
bcα] = −δ[b

a �c]
βγ �βγα,

[Q̃α,�aβγ ] = − 1
2�a

δε�
δε(βδγ )

α − 5
2�a

αδ�
δβγ .

(43)

3.4. p = 4 superalgebra

Derived from an ansatz for Maurer–Cartan equations in [13]:

{Q̃α, Q̃β} = −�a
αβP̃ a − �abcdαβ�abcd ,

[Q̃α, P̃ a] = −�abcdαβ�bcdβ,

[P̃ a, P̃ b] = −�abcdαβ�cdαβ,

[Q̃α,�abcd ] = −�[a
αβ�bcd]β,

[P̃ a, �
bcde] = − 1

2δ[b
a �c

αβ�de]αβ,

{Q̃α,�abcβ} = − 1
4�[a

γ δ�
bc]γ δδβ

α − 2�[a
αγ �bc]γβ,

[P̃ a, �
bcdα] = −δ[b

a �c
βγ �d]βγα,

[Q̃α,�abβγ ] = − 1
2�[a

δε�
b]δε(βδγ )

α − 5
2�[a

αδ�
b]δβγ ,

[P̃ a, �
bcαβ ] = −δ[b

a �c]
γ δ�

γδαβ,

{Q̃α,�aβγ δ} = − 3
5�a

εσ�εσ(βγ δδ)
α − 12

5 �a
αε�

εβγ δ.

(44)
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3.5. p = 5 superalgebra

Derived from an ansatz for Maurer–Cartan equations in [13]:

{Q̃α, Q̃β} = −�a
αβP̃ a − �abcdeαβ�abcde,

[Q̃α, P̃ a] = −�abcdeαβ�bcdeβ,

[P̃ a, P̃ b] = −�abcdeαβ�cdeαβ,

[Q̃α,�abcde] = −�[a
αβ�bcde]β,

[P̃ a, �
bcdef ] = − 1

2δ[b
a �c

αβ�def ]αβ,

{Q̃α,�abcdβ} = − 1
4�[a

γ δ�
bcd]γ δδβ

α − 2�[a
αγ �bcd]γβ,

[P̃ a, �
bcdeα] = −δ[b

a �c
βγ �de]βγα,

[Q̃α,�abcβγ ] = − 1
2�[a

δε�
bc]δε(βδγ )

α − 5
2�[a

αδ�
bc]δβγ ,

[P̃ a, �
bcdαβ ] = −δ[b

a �c
γ δ�

d]γ δαβ,

{Q̃α,�abβγ δ} = − 3
5�[a

εσ�b]εσ (βγ δδ)
α − 12

5 �[a
αε�

b]εβγ δ,

[P̃ a, �
bcαβγ ] = −δ[b

a �c]
δε�

δεαβγ ,

[Q̃α,�aβγ δε] = − 5
6�a

σρ�
σρ(βγ δδε)

α − 35
12�a

ασ�σβγ δε.

(45)

We wish to find closed forms �A1···Ap satisfying these algebras under the action of the
modified left generators (37). If we can, then each extended algebra can be interpreted as the
minimal algebra (19) modified by an anomalous term M(p). The components M(p)

AB are read
as modifications to the [QA,QB} brackets of the minimal algebra. For example, from

{Q̃α, Q̃β} = −�a
αβP̃ a − �a1···apαβ�a1···ap , (46)

we learn that

M(p)
αβ = −�a1···apαβ�a1···ap . (47)

Reading similarly from the RHS of [Q̃α, P̃ b] and [P̃ a, P̃ b], it follows that M(p) has the
structure

• p = 1

M(1) = − 1
2eβeα�aαβ�a − eaeα�aαβ�β. (48)

• p � 2

M(p) = − 1
2eβeα�a1···apαβ�a1···ap − eaeα�aa1···ap−1αβ�a1···ap−1β

− 1
2ebea�aba1···ap−2αβ�a1···ap−2αβ. (49)

To find the required closed forms �A1···Ap , one first observes that

[Q̃A,�A1···Ap } = [QA,�A1···Ap }. (50)

The unmodified left generators are thus sufficient for our purposes and the explicit form of
Q̃A is not required. Second, �A1···Ap must all have their ‘natural’ dimension:

dim[�a1···amα1···αn ] = m +
n

2
. (51)

This follows from the requirement dim M(p) = p + 1, and the fact that QA reduces the
dimension of a form by the dimension associated with its index. One finally notes that the
generator �α1···αp is ‘central’. There is only one candidate for �α1···αp satisfying the required
properties:

�α1···αp ∝ dθα1 · · · dθαp . (52)
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We shall fix the proportionality constant at unity since it serves only as an overall scaling for the
extra generators. To find the remaining generators, one can first write the most general allowed
form for �aα1···αp−1 using arbitrary coefficients. The coefficients are then found by requiring
that the extended superalgebra be satisfied. The process is then continued for �abα1···αp−2 and
so on until the final generator �a1···ap is found. The relevant Fierz identity is required to find
the solutions and its implementation is sometimes more nontrivial than usual due to double
symmetrizations which overlap only partially. In general, one finds that the requirement of
satisfying the extended superalgebra results in more equations than the coefficients present. A
solution for such a system is only possible if a sufficient number of equations are redundant.
In fact, exactly the right number of redundant equations are present in order that the solution
is unique. That is, the representation for each algebra is unique. Having obtained the solution,
the redundant equations then provide a good consistency check. We note here that p = 1, 2
expressions below were also found in [13] in the context of extended superspace actions; more
on this will be discussed in section 4. The results3 are as follows.

3.6. p = 1 charges

�α = dθα, �a = 2 dxa. (53)

3.7. p = 2 charges

�αβ = d[dθα θβ],

�aβ = d
[

9
2 dxa θβ + 1

4θ�a dθ θβ
]
,

�ab = d
[
5xa dxb + 1

2x[aθ�b] dθ
]
.

(54)

3.8. p = 3 charges

�αβγ = d[dθα dθβ θγ ],

�aβγ = d
[
6 dxa dθβ θγ + 1

2θ�a dθ dθ(βθγ )
]
,

�abβ = d
[− 29

2 dxa dxb θβ − 3
2 dx[aθ�b] dθ θβ − x[aθ�b] dθ dθβ − 1

8θ�a dθ θ�b dθ θβ
]
,

�abc = d
[− 35

3 xa dxb dxc − 3x[a dxb θ�c] dθ − 1
4x[aθ�b dθ θ�c] dθ

]
.

(55)

3.9. p = 4 charges

�αβγ δ = d[dθα dθβ dθγ θδ],

�aβγ δ = d
[
6 dxa dθβ dθγ θδ + 3

5θ�a dθ dθ(β dθγ θδ)
]
,

�abβγ = d
[−19 dxa dxb dθβ θγ − 3 dx[aθ�b] dθ dθ(βθγ ) + x[aθ�b] dθ dθβ dθγ

− 1
4θ�a dθ θ�b dθ dθ(βθγ )

]
,

�abcβ = d
[− 65

2 dxa dxb dxc θβ − 19
4 dx[adxbθ�c] dθ θβ + 6x[a dxb θ�c] dθ dθβ

− 7
8 dx[aθ�b dθ θ�c] dθ θβ + 1

2x[aθ�b dθ θ�c] dθ dθβ

− 16θ�a dθ θ�b dθ θ�c dθ θβ
]
,

�abcd = d
[−21xa dxb dxc dxd − 19

2 x[a dxb dxc θ�d] dθ − 7
4x[a dxb θ�c dθ θ�d] dθ

− 1
8x[aθ�b dθ θ�c dθ θ�d] dθ

]
.

(56)

3 We anticipate the final result by referring to the forms of the representation as ‘charges’.
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3.10. p = 5 charges

�αβγ δε = d[dθα dθβ dθγ dθδ θε],

�aβγ δε = d
[

15
2 dxa dθβ dθγ dθδ θε + 5

6θ�a dθ dθ(β dθγ dθδ θε)
]
,

�abβγ δ = d
[− 47

2 dxa dxb dθβ dθγ θδ − 9
2 dx[aθ�b] dθ dθ(β dθγ θδ)

− x[aθ�b] dθ dθβ dθδ θδ − 3
8θ�a dθ θ�b dθ dθ(β dθγ θδ)

]
,

�abcβγ = d
[−52 dxa dxb dxc dθβ θγ − 47

4 dx[a dxb θ�c] dθ dθ(βθγ )

− 15
2 x[a dxb θ�c] dθ dθβ δθγ − 17

8 dx[aθ�b dθ θ�c] dθ dθ(βθγ )

− 5
8x[aθ�b dθ θ�c] dθ dθβ dθγ − 7

48θ�a dθ θ�b dθ θ�c dθ dθ(βθγ )
]
,

�abcdβ = d
[

281
4 dxa dxb dxc dxd θβ + 13 dx[a dxb dxc θ�d] dθ θβ

+ 47
2 x[a dxb dxc θ�d] dθ dθβ + 31

8 dx[a dxb θ�c dθ θ�d] dθ θβ

+ 17
4 x[a dxb θ�c dθ θ�d] dθ dθβ + 7

12 dx[aθ�b dθ θ�c dθ θ�d] dθ θβ

+ 7
24x[aθ�b dθ θ�c dθ θ�d] dθ dθβ + 7

192θ�a dθ θ�b dθ θ�c dθ θ�d dθ θβ
]
,

�abcde = d
[

77
2 xa dxb dxc dxd dxe + 26x[a dxb dxc dxd θ�e] dθ

+ 31
4 x[a dxb dxc θ�d dθ θ�e] dθ + 7

6x[a dxb θ�c dθ θ�d dθ θ�e] dθ

+ 7
96x[aθ�b dθ θ�c dθ θ�d dθ θ�e] dθ

]
.

(57)

Having found a representation of �A1···Ap , we now need to check the validity of ansatze
(48) and (49) for the corresponding anomalous term representatives. Firstly, one verifies using
the relevant Fierz identity that sM(p) = 0. M(p) is also identically d closed since �A1···Ap

are closed forms. We therefore have M(p) ∈ Hp,2. Because [M] is the unique, D nontrivial
class, any nontrivial representative of Hp,2 is a representative of [M]. It therefore suffices to
show that M(p) is D nontrivial. The coboundaries of Hp,2 are identically equal to the gauge
transformations. Hence, if there exists a gauge field λ ∈ �p−1,1 such that

M(p) = s dλ, (58)

then M(p) is trivial (since then M(p) = D dλ). Otherwise it is nontrivial.
In the case of the superstring, it was explicitly shown that M(1) is D cohomologous to H

[19]. The nontriviality of M(1) then follows from that of H. For p � 2, one notes that M(p) is
constructed using the structure constants �a1···apαβ, �aαβ and ηab. In attempting to solve (58),
one therefore needs to consider only those λ gauge fields constructed using these constants.
We believe the following to be a complete set of such fields:

λ(i) = xa dxa1 · · · dxai θ�ai+1 dθ · · · θ�ap−1 dθ e�aa1···ap−1θ, 0 � i � p − 1,

λ′(i) = e�aθxb dxa1 · · · dxai θ�ai+1 dθ · · · θ�ap−2 dθ θ�aba1···ap−2 dθ, 0 � i � p − 2,

λ′′(i) = eaxb dxa1 · · · dxai θ�ai+1 dθ · · · θ�ap−2 dθ θ�aba1···ap−2 dθ, 0 � i � p − 2.

(59)

In equation (58), it suffices to consider the terms of the highest order in xm. One then
needs to consider a linear combination of only λ(p−1) and λ′′(p−2). One finds that a solution
for the coefficients does not exist for any value of p. Provided that set (59) is complete,
M(p) is therefore nontrivial, and is thus a representative of the anomalous term associated
with the standard superspace p-brane action. Charges (53) through (57) (and their associated
anomalous terms) generalize the results of [5] to the case where the fermionic topological terms
are retained. Note that for p � 3 there are additional charges not present in the anomalous
term; these are simply those which close the extended algebra (they result from the action of
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QA on the anomalous term). We conclude that algebras (41) through (45) are indeed generated
as the topological charge algebras of the standard p-brane action.

4. Extended superspace actions

The extended superalgebras (41) through (45) can be used to construct left invariant potentials
B for the field strength H [11–13]. The corresponding extended superspace p-brane action
is the same as (12), but where B is now the left invariant potential. In this case, W = 0
solves the descent equations, and the corresponding Noether charge algebra is the minimal
algebra. In [13], Noether charges associated with the extra coordinates of p = 1, 2 extended
superspace actions were found. Equations (53) and (54) are proportional to the forms given
there. Although these results were obtained in different contexts4, they should agree. In each
case the forms transform according to the same extended superalgebra, and we claim that
based upon this transformation property alone the solution is unique.

Conversely, it follows that our results extend those of [13] to give the Noether charges
associated with the extra coordinates of the extended superspace actions for the remaining
values of p. Let us separate the generators of the underlying extended superalgebras into
standard/extended parts as TA = {TÃ, TǍ}, with

TÃ = {−Q̃α,−P̃ a},
TǍ = {−�Ǎ}

= {−�A1···Ap }.
(60)

The extra generators TǍ form an ideal. It follows that the standard coordinates do not transform
under the left/right group actions generated by TǍ. The inverse vielbeins therefore satisfy

RǍ
M̃ = 0, LǍ

M̃ = 0. (61)

Now, the momenta of the action can be written as [6, 19]

PM = P
(NG)
M +

(
i∂1 · · · i∂p

B
)
M

, (62)

where i is the interior derivation and ∂i is the ith worldvolume tangent vector. P
(NG)
M are the

conjugate momenta for the NG action, which vanish for the extra coordinates:

P
(NG)

M̌
= 0. (63)

It follows that for the extended superspace action, the Noether charge associated with the
generator TǍ is that derived (slightly differently) in [13]:

QǍ =
∫

dpσ RǍ
M

(
i∂1 · · · i∂p

B
)
M

(64)

= (
iVǍ

B
)
,

where

VǍ = RǍ
M∂M (65)

4 In the previous section, we constructed topological charges of the standard superspace action and showed that they
generate the extended algebras (41) through (45). We may contrast this with the work of [13], where the extended
algebras were used from the outset to construct invariant extended superspace actions. The resulting Noether charges
associated with the extra coordinates were then found for the cases p = 1, 2. It was noted there that the bosonic
topological term of these charges agrees with that obtained from the anomalous term of the standard superspace
formulation [5]. Showing that this correspondence also holds for the fermionic topological terms is a new result
which is the main purpose of this section.
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is the left invariant vector field associated with TǍ. Since the Noether charges satisfy the
extended superalgebras (41) through (45) under Poisson brackets, it follows that the forms
iVǍ

B must satisfy the same algebra under the action of QÃ. We claim that forms satisfying this
transformation property have the unique solutions (53) through (57). So, for an appropriate
normalization of the action, one has

iVǍ
B = �Ǎ (66)

and the Noether charges

QǍ = �Ǎ. (67)

Interestingly enough, this argument has explicitly determined some Noether charges for a
p-brane action without needing the explicit structure of the WZ term. It is only required that
the extended background superspace must admit a left invariant WZ form. That such WZ
forms do indeed exist was shown explicitly for p � 3 by constructing the required potential
B [12, 13].

The conserved charges �A1···Ap are thus the same in both the standard and extended
superspace formulations of the action. In the former they are anomalous terms of the Noether
charge algebra, while in the latter they are the Noether charges themselves. This result extends
that of [13] to establish a correspondence between the fermionic as well as the bosonic terms,
and also for all allowed values of p.

5. Comments

The representations for �A1···Ap appear to be a basis for the p-forms. It seems possible to
invert each representation to write

dxm1 · · · dxmi dθµ1 · · · dθµp−i ↔ {�a1···aj α1···αp−j , j � i}. (68)

For example, for p = 2

dθα dθβ = �αβ

dxa dθα = 2
9�aα + 1

18θα�a
βγ �βγ − 1

18 (�aθ)β�αβ

dxa dxb = − 1
5�ab + 1

45 (�[aθ)α�b]α − 1
10x[a�b]

αβ�αβ − 1
180 (�aθ)α(�bθ)β�αβ.

(69)

This constitutes a change of basis for the p-forms, which in this case is not inherited in the
usual way from a vielbein.

The topological anomalous term M
(p)

is a topological integral of its form representation

M(p). If the fermionic topology is taken to be trivial, then the only contribution to M
(p)

comes from (dx)p term of �a1···ap . This is the ‘central’ anomalous term found in [5]. The
corresponding extended algebra can be related to partial breaking of supersymmetry [24, 25].
We note that this central extension is not present in all gauges. Using the gauge transformation
generated by λ(p−1), one finds that the fully modified Noether charge algebra in the presence
of the trivial fermionic topology is

{Q̃α, Q̃β} = −�a
αβP̃ a − E�a1···apαβ

∫
dxa1 · · · dxap , (70)

where the integral is over the spatial section of the brane and E is a free constant resulting from
the λ gauge freedom. The familiar bosonic extension of the p-brane Noether charge algebra
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is thus the result of a specific choice of the gauge. In another gauge, one obtains the minimal
algebra5.

A precursor to the p = 2 algebra (42) was an algebra that results from setting �αβ = 0
in (42) [26]. This algebra does not appear in the spectrum of the topological charge algebras
generated by the standard action. One may see this by noting that �aβ becomes ‘central’ in
this algebra. Since the only left invariant possibilities for a form representing this generator
are not closed, this cannot be a topological charge algebra. This might also have been expected
on the basis that this contracted algebra does not allow the construction of a left invariant WZ
form [12] (the topological charge algebras of the standard action appear to be such that they
do allow the construction of such WZ forms [19]). Although �αβ appears to be a necessary
generator in the topological charge algebras, it is possible for the associated anomalous term
Mab to vanish (and commuting translations are thus restored: [Pa, Pb] = 0). For example,
to obtain such algebras for p = 2, one first applies the gauge transformation generated by
1
2λ′′(0) from (59), which sets Mab = 0. All remaining gauge transformations then preserve
this property.

One may ask if there are any new algebras of interest generated as the topological charge
algebras of the standard action. Upon investigating the set of p = 2 gauge transformations
(59), we found that new superalgebras were generated which allowed the construction of left
invariant WZ forms. However, they seem to require the introduction of more generators than
are present in (42). Upon constructing the left invariant WZ form, one then finds that free
parameters remain. This is because the space has been extended more than is necessary; one
might say that the associated superspace is not ‘minimally extended’. In the p = 1 case,
we found that the entire spectrum of topological charge algebras yielded minimally extended
superspaces [19]. However, for p � 2 it appears that (42) through (45) may be the unique,
minimally extended topological charge algebras generated by the standard p-brane action.
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